ORIGINAL PAPER

Density functional study of oxygen vacancy formation and spin density distribution in octahedral ceria nanoparticles

Talgat M. Inerbaev · Sudipta Seal · Artëm E. Masunov

Received: 4 November 2009 / Accepted: 25 January 2010 / Published online: 2 March 2010 © Springer-Verlag 2010

Abstract We report plane wave basis density functional theory (DFT) calculations of the oxygen vacancies formation energy in nanocrystalline CeO_{2-x} in comparison with corresponding results for bulk and (111) CeO_2 surface. Effects of strong electronic correlation of Ce4f states are taken into account through the use of an effective on-site Coulomb repulsive interaction within DFT+U approach. Different combinations of exchange-correlation functionals

T. M. Inerbaev · S. Seal · A. E. Masunov (⊠)
NanoScience Technology Center, University of Central Florida,
12424 Research Parkway, Ste 400,
Orlando, FL 32826, USA
e-mail: amasunov@mail.ucf.edu

S. Seal

Department of Mechanical, Material and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd., Eng 381, Orlando, FL 32816, USA

S. Seal
Advanced Materials Processing and Analysis Center,
University of Central Florida,
4000 Central Florida Blvd., Eng 381,
Orlando, FL 32816, USA

A. E. Masunov
Department of Chemistry, University of Central Florida,
4000 Central Florida Blvd., CH 117,
Orlando, FL 32816, USA

A. E. Masunov
Department of Physics, University of Central Florida,
4000 Central Florida Blvd., MAP 310,
Orlando, FL 32816, USA

A. E. Masunov
Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road,
Orlando, FL 32816, USA and corresponding U values reported in the literature are tested and the obtained results compared with experimental data. We found that both absolute values and trends in oxygen vacancy formation energy depend on the value of Uand associated with degree of localization of Ce4f states. Effect of oxygen vacancy and geometry optimization method on spatial spin distribution in model ceria nanoparticles is also discussed.

Keywords Cerum dioxide · Density functional theory · DFT+U · Nanoceria · Nanoparticles · Oxygen vacancy

Introduction

Cerium is a rare earth element, the first in lanthanide series. Cerium oxide, or ceria, is technologically important material with remarkable properties that is used in a number of applications. Major applications of ceria are in catalysis [1] and solid oxide fuel cells [2]. The unique property of ceria nanoparticles in radical scavenging makes it a high promising material for biomedical applications [3].

Bulk cerium oxide has two stable stoichiometric forms: the cubic [4] fluorite-type dioxide (CeO₂) Fm3m and the hexagonal [5] cerium sesquioxide (Ce₂O₃) $P\overline{3}m$. In these compounds Ce atoms have +4 and +3 oxidation states respectively. In Ce₂O₃ one electron per cation occupies the Ce4*f* subvalent orbital, which remains empty in CeO₂. Close thermodynamic stability of these stoichiometric forms leads to continuous range of partially reduced (also called "mixed valence") phases CeO_{2-x}, where oxygen vacancy (V_O) can be easily formed or eliminated [6]. This "oxygen storage capacity" of ceria is well known and is widely used in a number of catalytic processes, most notably for purification of exhaust gases in three-way automotive catalytic converters [7, 8]. The formation of oxygen vacancies in CeO_{2-x} results in the change in cerium oxidation state [9, 10]. The valence and defect structure of ceria is dynamic and may change in response to physical parameters such as temperature, presence of other ions, and oxygen partial pressure [9, 11, 12]. Nanocrystalline form of ceria was shown to increase the oxygen vacancy concentration with the decrease of particle size [13, 14]. Measurements of defect formation energy revealed that for nanoceria heat of reduction is by a factor of 2 lower than the corresponding single crystal value [15–17]. Thus, defect thermodynamics of nanoceria significantly differs from the bulk material.

Qualitatively correct and internally consistent computational description of cerium oxides in both oxidation states presented a challenge for electronic structure approaches. The computational description of perfect CeO₂ structure is not so complicated due to the absence of Ce4f electrons. Density functional theory (DFT) calculations somewhat underestimate the band gap value [18-20], which is a general drawback of pure DFT. However, for insulating Ce₂O₃ standard DFT calculations fail to reproduce the localized nature of of Ce4f electrons and predict the band structure that corresponds to a metallic state [18, 20, 21]. These shortcomings may be eliminated in advanced DFT approaches including: (i) addition of semiempirical or selfconsistent Hubbard parameter U to take into account on-site electron correlations (DFT+U method) [19, 22–25], (ii) self-interaction-corrected DFT (SIC-DFT) [26, 27], and (iii) hybrid Hartree-Fock/DFT approach [28, 29].

Hybrid functionals, that include a fraction of the Hartree-Fock exchange, provide a reasonably balanced description of lattice constants and optical properties of both CeO_2 and Ce_2O_3 [28, 29], while the relative energetics is predicted less accurately [29]. Due to lower computational cost, DFT+U approach is used to study ceria more often [19, 20, 22, 25, 29-36]. This method presents the simplest form of the orbital-dependent exchange-correlation functional and has two parameters for each atomic orbital: the Hubbard parameter U (which reflects the strength of on-site Coulomb interaction), and parameter J (which adjusts the strength of the exchange interaction). In the simplified rotationally invariant method due to Dudarev et al. [37], these parameters are combined into a single parameter $U_{eff} = U-J$. This parameter, determined self-consistently for Ce4f orbital by Cococcioni et al. [31] amounts to $U_{\text{eff}}=2.5-3.5$ eV for local density approximation (LDA) and $U_{\rm eff}$ =1.5–2.0 eV for gradient-generalized approximation (GGA) in Perdew-Burke-Ernzerhof (PBE) parametrization. However, semiempirical adjustment of $U_{\rm eff}$ to fit certain observables to their experimentally determined values proved to be a more practical approach. For instance, the value of $U_{\rm eff}$ = 6.3 eV combined with PBE functional was found to give a better agreement with experiment for equilibrium lattice constant and elastic bulk moduli [33].

A number of papers discuss appropriate U values for both LDA and GGA methods [20, 22, 25, 29, 30, 32, 36, 38]. Surprisingly, LDA+U approach describes geometry and thermodynamics of both cerium oxides forms more accurately than GGA+U one [22, 25]. Loschen et al. argued [22] that thermodynamic properties of ceria are reproduced more accurately by LDA+U due to fortuitous error cancellation and it is more rigorous to use GGA+Uapproach. Da Silva et al. suggested [29] values of $U_{\rm eff}$ = 2.0 eV (for PBE) and $U_{\rm eff}$ =3.0-4.0 eV (for LDA) to give the best overall description for the energetics, lattice constant, and magnetic ordering in Ce₂O₃. Castleton et. al. [25] investigated Ce4f electron localization and suggested the best choice for $U_{\rm eff}$ to be 6.0 eV for LDA and 5.5 eV for PBE. Overall, the published studies that consider both CeO_2 and Ce_2O_3 cover the range of U_{eff} parameter between 2 and 8 eV, depending on the property of interest [22, 25, 29, 30, 38].

In the present contribution we explore DFT+U approach with the most popular LDA, PBE and PW91 exchangecorrelation functionals using previously suggested values of $U_{\rm eff}$ to find the most reasonable description of oxygen vacancies formation energies in nanoceria. The spin densities are used to analyze the degree of electron localization, closely related to $U_{\rm eff}$ value. Experimentally measured energies of oxygen vacancies formation in both bulk and nanoparticles are used as a reference [15–17].

Computational details

All calculations were carried out with the plane-wave based Vienna ab initio simulation package (VASP) [39, 40]. The geometry optimization of electronic ground state was performed using local density (LDA+U) approximation. On-site Coulomb and exchange interaction are treated by a single effective parameter $U_{\text{eff}} = U$ -J. We used plane waves energy cutoff of 415 eV, projected augmented wave (PAW) method, and U_{eff} =5 eV [41]. These calculation parameters were recently employed for investigation of defect formation in ceria nanoparticles [34, 35]. We adopt computational protocol from these papers to investigate the effect of exchange correlation functional and the choice of U_{eff} value on the electron distribution and thermodynamic predictions.

The selection of model nanoparticle structure is critical for the reliability of computed observables. In this investigation we selected nanoparticles of octahedral shape constructed by (111) planes cut from the bulk fluorite CeO_2 lattice. These nanoparticles with chemical formula $Ce_{19}O_{32}$ and $Ce_{44}O_{80}$ are presented in Fig. 1. Our assumption of

thermodynamic stability of octahedral nanoceria is consistent with preferential stability of (111) surface of CeO_2 [42]. The choice of these model nanostructures is also in line with experimental findings that report truncated octahedral shape for smaller nanoparticles (3–10 nm) and the octahedral shape for the larger ones [43, 44].

Recently Loschen et al. performed a versatile investigation of structural and energetic properties of a number of nanoceria structures with both octahedral and truncated octahedral shapes [35]. They demonstrated that among small clusters the stoichiometric moiety $Ce_{13}O_{26}$ is the most stable one. The disadvantage of this system is the absence of Ce^{3+} ions, making it a poor model to study nanoceria. For instance, the lattice constant increase for smaller nanoparticles (known as the lattice anomaly), is observed for oxygen deficient nanoparticles, but not for stoichiometric ones [45]. In this study we used symmetric octahedral non-stoichiometric nanoparticles based on the fact that essential properties of moderately large ceria nanoparticles were adequately reproduced by using bulkderived octahedral models [34, 35].

The vacancy formation energy was calculated as:

$$E_{vac} = \left(E_{def} + \frac{1}{2}nE_{O_2} - E_{perf}\right)/n,\tag{1}$$

where E_{perf} and E_{def} are the total energies of the structures before and after the formation of *n* vacancies and E_{O_2} is the energy of the oxygen molecule. The energies E_{def} and E_{perf} were obtained in calculations of the relaxed structures, and the energy E_{O_2} was obtained in spin-polarized calculations of the O₂ molecule in periodical box with the side of 10Å in length.

Results and discussion

Defect formation energies

The values of E_{vac} for bulk, CeO₂ (111) slab and octahedral nanoparticles Ce₁₉O₃₂ and Ce₄₄O₈₀ calculated in the present work are summarized in Table 1 and compared with available results from the literature. As one can see, our PW91+U results (U_{eff} =3 eV) for optimized Ce₁₉O₃₂ and Ce₄₄O₈₀ nanoparticles confirm the results of Loschen et al. [35]. The surface oxygen vacancy formation energies obtained with LDA+U and GGA+U noticeably differ, while both PW91 and PBE functionals give very close results at the same values of U_{eff} . For this reason we focused our attention on LDA and PBE functionals only.

Next we investigated the effect of parameter $U_{\rm eff}$ on the binding energy of Ce₄₄O₈₀ ceria nanoparticle calculated with PBE exchange-correlation functional using equation

$$E_b = \frac{E(Ce_{n_{Ce}}O_{n_O}) - \left(n_{Ce}\mu_{Ce} + 1/2n_O\mu_{O_2}\right)}{n_{Ce} + n_O},$$
(2)

where n_{Ce} and n_O are the number of Ce and O atoms in ceria nanoparticles and μ_{Ce} and μ_{O_2} are chemical potentials of cerium and oxygen atoms, respectively. The μ_{Ce} was calculated for γ -Ce and μ_{O_2} is the chemical potential of the oxygen molecule in the gas phase. Results are presented in Fig. 2a. In contrast to bulk ceria, where formation energies of both crystal modifications of ceria slightly increase with U_{eff} , the absolute value of E_b of nanoceria steadily decreases. In other words, theory predicts less stable ceria nanoparticle as U_{eff} grows. The minimum appearing on the $E_b(U_{\text{eff}})$ curve coincides with the minima in formation

Table 1 Oxygen vacancyformation energy

cancy					
	System	Method	$U_{\rm eff}$, eV	V _O position	$E_{\rm vac}, {\rm eV}$
	Bulk CeO ₂	$LDA+U_{eff}$	5	Inside	4.35 ^a
		PW91	0	Inside	4.73 ^b
		PW91+ $U_{\rm eff}$	5	Inside	4.55 ^c
		FP-LMTO-PW91	-	Inside	4.55 ^d
		Experiment	-	Inside	4.67 ^e
	(111) CeO ₂ surface	$LDA+U_{eff}$	5	Surface	3.33 ^a
		$LDA+U_{eff}$	5.3	Surface	$3.21 - 3.31^{f}$
		PW91	0	Surface	3.39 ^b
		PW91+ $U_{\rm eff}$	3	Surface	3.91 ^a
		$PBE+U_{eff}$	4.5	Surface	$2.34 - 2.50^{f}$
		PW91+ $U_{\rm eff}$	5	Surface	2.60 °
				Surface/subsurface	2.13/1.94 ^g
	Ce ₁₉ O ₃₁	$LDA+U_{eff}$	5	Surface/ inside	1.92 ^a
		PW91+ $U_{\rm eff}$	3	Surface/ inside	3.55/ 4.31 ^h
		$PBE+U_{eff}$	2	Surface/ inside	5.14 ^a
			5.5	Surface/ inside	3.44 ^a
			7	Surface/ inside	0.70^{a}
	Ce ₁₉ O ₃₀	$LDA+U_{eff}$	5	Surface	3.29 ^a
		PW91+ $U_{\rm eff}$	3	Surface	4.54 ^a
		$PBE+U_{eff}$	2	Surface	4.42 ^a
			5.5	Surface	3.71 ^a
			7	Surface	2.45 ^a
	Ce ₄₄ O ₇₉	$LDA+U_{eff}$	5	Surface	0.72 ^a
		PW91+ $U_{\rm eff}$	3	Surface	3.52 ^h
		$PBE+U_{eff}$	2	Surface	5.19 ^a
			5.5	Surface	-0.62^{a}
			7	Surface	-2.07^{a}
	Ce ₄₄ O ₇₈	$LDA+U_{eff}$	5	Surface	1.97 ^a
		PW91+ $U_{\rm eff}$	3	Surface	4.52 ^a
		$PBE+U_{eff}$	2	Surface	4.49 ^a
			5.5	Surface	0.93 ^a
			7	Surface	-1.09^{a}
	Ce ₄₄ O ₇₇	$LDA+U_{eff}$	5	Surface	2.36 ^a
		PW91+ $U_{\rm eff}$	3	Surface	3.73 ^a
		$PBE+U_{eff}$	2	Surface	4.21 ^a
			5.5	Surface	1.41 ^a
			7	Surface	0.36 ^a
	Ce ₄₄ O ₇₆	$LDA+U_{eff}$	5	Surface	1.92 ^a
		$PBE+U_{ef}$	2	Surface	4.16 ^a
			5.5	Surface	1.73 ^a
			7	Surface	1.12 ^a
71:	Ce ₈₅ O ₁₅₉	$LDA+U_{eff}$	5	Surface	0.54 ^a
; ^e Ref. [49];	Nanocrystalline	Experiment	-	Extrinsic (grain boundary)	$1.18 - 1.52^{i}$
; ^h Ref. [35];		Experiment	_	Intrinsic (inside grain)	$1.77 - 2.28^{i}$

^a This work; ^b Ref. [47]; ^c Ref. [36]; ^d Ref. [48]; ^e Ref. | ^f Ref. [50]; ^g Ref. [51]; ^h Ref. | ⁱ Refs. [15–17].

energies obtained for both modifications of ceria and corresponds to delocalization of *f*-electrons at $U_{\text{eff}} < 2 \text{ eV}$ accompanied by Mott transition (collapse of electronic solution for the γ -Ce to solution for α -Ce with itinerant *f* electrons) [22].

Increase of E_b leads to decrease of $E_{\rm vac}$ for one vacancy formation (Fig. 2b). For $U_{\rm eff}$ >5.3 eV, Ce₄₄O₈₀ becomes unstable with respect to one surface oxygen vacancy formation. At $U_{\rm eff}$ =2 eV predicted value of $E_{\rm vac}$ is 5.19 eV, that is larger than experimental value of oxygen

Fig. 2 PBE+ U_{eff} calculated (a) binding energy and (b) E_{vac} per one vacancy for Ce₄₄O₈₀ ceria nanoparticle as a function of U_{eff}

vacancy formation in bulk ceria. Energies per one vacancy required to remove two or three surface oxygen atoms at $U_{\rm eff}=2$ eV are equal to 4.49 and 4.21 eV, respectively. These data are also close to $E_{\rm vac}$ in bulk and seem to be overestimated. On the other hand, at $U_{\rm eff}<3.5$ eV the energy cost of creating multiple oxygen vacancies becomes smaller. On the other hand, at $U_{\rm eff}>3.5$ eV the Ce₄₄O₈₀ nanoparticle becomes more stable with respect to formation of two and three surface oxygen vacancies. The Ce₁₉O₃₂ nanoparticle demonstrates the same trend to increase $E_{\rm vac}$ with more surface vacancies formation, while the values of $E_{\rm vac}$ are significantly larger than for the Ce₄₄O₈₀ one.

To summarize all calculated data for both considered ceria nanoparticles, we plot the E_{vac} as a function of $x=N_{\text{Ce3+}}/N_{\text{Ce}}$ calculated with different U_{eff} in Fig. 3. $N_{\text{Ce3+}}$ and N_{Ce} are the number of Ce³⁺ cations and total number of Ce atoms in the nanoparticle, respectively. The function $E_{\text{vac}}(x)$ is not monotonic at small (c.a. 2 eV), and large (c.a 7 eV) values of $U_{\rm eff}$, while at $U_{\rm eff}$ =5.5 eV it is steadily increasing. Such behavior could be explained by the effect of f-electrons localization. As it was demonstrated in [25], f-electrons localization is described very well using PBE functional with U_{eff} =5.5 eV while at U_{eff} =2 and 7 eV their delocalization is significant. This peculiarity is reflected in non-monotonic $E_{\rm vac}(x)$ behavior. Slope of $E_{\rm vac}(x)$ at the values of $U_{\rm eff}=2$ and 7 eV is opposite: $E_{vac}(x)$ at smaller U_{eff} decreases, $E_{vac}(x)$ at larger U_{eff} increases. At the value of U_{eff} =5.5 eV behavior of $E_{\rm vac}(x)$ represents an intermediate case of monotonic function. In the following, all the properties will be discussed assuming this value. At that value E_{vac} per one vacancy decreases with (i) decrease of number of introduced oxygen vacancies and (ii) nanoparticle size increase. The only parameter that is common for both of these characteristics is Ce^{3+}/Ce^{4+} ratio. In other words, E_{vac} decreases with $Ce^{3+}/$ Ce⁴⁺ ratio decrease.

At low Ce^{3+}/Ce^{4+} ratio it is easy to create vacancy and ceria nanoparticle is unstable while at large Ce^{3+}/Ce^{4+} ratio E_{vac} exceeds some critical value where oxygen atom cannot be removed even under strong reduction conditions. Using results for $Ce_{44}O_{80-n}$ nanoparticle we estimate the equilib-

rium concentration of Ce^{3+} to be about 45–55%. This is more than twice as large as experimentally evaluated concentration for Ce^{3+} ions of ~18% ceria nanoparticle of 3 nm diameter [46]. This discrepancy could be explained by a smaller size of the model nanoparticle, neglecting environmental effects (aqueous solution), and neglected structural details (truncated octahedral shape of ceria nanoparticles of less than 10 nm in diameter). Removing vertex Ce ions would allow to fine tune Ce^{3+}/Ce^{4+} ratio and may be used to improve description of nanoceria energetics.

Spatial distribution of spin density

The vacancy formation thermochemistry, discussed in the previous section is closely related to the *f* electron localization on certain cerium atoms. The preferable spatial distribution of Ce^{3+} and Ce^{4+} cations on the surface and interior of ceria nanoparticles can also be important for catalytic activity of ceria. In order to analyze these details of electron structure, we plotted spin distribution obtained for $Ce_{44}O_{80}$ and $Ce_{44}O_{79}$ nanoparticles on Fig. 4. We optimized the structure in spin polarized approach and identified the oxidation state of Ce using the magnetic

Fig. 3 PBE+ U_{eff} calculated values of E_{vac} as a function of $x=N_{\text{Ce3}+}/N_{\text{Ce}}$, where $N_{\text{Ce3}+}$ and N_{Ce} are the number of Ce³⁺ cations and total number of Ce in ceria nanoparticle, respectively

moment at Ce atoms as an indicator. Results for Ce₄₄O₈₀ are in perfect agreement with the predictions recently reported by Loschen et al. [35]. The paramagnetic Ce⁴⁺ ions occupy inside, facet, and corner sites while edge cations are in delocalized ferromagnetic spin state with magnetic moment of $0.67 \mu_{\rm B}$ (Fig. 4a).

The introduction of one surface vacancy drastically changes spin density distribution. As shown in Fig. 4b, all Ce cations at corner sites (except one) increase their magnetic moment to $0.97 \mu_{\rm B}$, while the edge opposite to the facet with vacancy has two Ce atoms with magnetic moment equal to $0.57 \mu_{\rm B}$, sharing *f*-electron.

The geometry optimization at spin polarized level was reported [35] to be critically important for the spatial distribution of Ce^{3+}/Ce^{4+} cations in $Ce_{19}O_{32}$ nanoparticle. On the other hand for Ce44O80 nanoparticle there is no difference in spin distributions calculated using geometries optimized at spin polarized or spin restricted levels. We performed spin polarized geometry optimization for octahedral shaped Ce₈₅O₁₆₀ and found [35] that spatial spin distribution differs from the one predicted for structure optimized with spin restricted calculations. There are 6 corner, 36 edge, 24 facet and 19 internal Ce sites in Ce₈₅O₁₆₀ nanoparticle. For structure optimized using spin restricted level of theory, the corner and edge Ce cites possess magnetic moments of 0.70 and $0.41 \mu_{\rm B}$ respectively, while magnetic moments at all other sites are zero. In the case of structure optimized with spin polarized approach, there are magnetic moment of $0.97 \mu_{\rm B}$ localized at corner sites and $0.62 \mu_{\rm B}$ on 24 out of 36 edge sites. The value of magnetic moment does not exceed $0.02 \mu_{\rm B}$ on all remaining Ce cations.

Conclusions

We reported the DFT+U predictions for oxygen vacancy formation energy and spin distribution in model ceria nanoparticles. All systems were relaxed at LDA+ U_{eff} (U_{eff} =5 eV) level of theory [22, 34, 35]. Energy of oxygen vacancies formation was evaluated using LDA, PBE, and PW91 exchange-correlation functionals and different on-site correlation energies U_{eff} . We found that previously recommended values of U_{eff} =3 eV for PW91 functional and U_{eff} =2 eV for PBE one reproduce E_{vac} for bulk ceria well, while for nanoceria calculated values of oxygen vacancy formation energy are significantly overestimated. $LDA+U_{eff}$ approach gives better agreement with experiment for nanoceria due to fortuitous error cancellation [22]. At PBE+ U_{eff} level we found that decreasing of $U_{\rm eff}$ parameter increases the value of $E_{\rm vac}$, and the best agreement with experiment on both bulk and nanoceria is obtained with $U_{\rm eff}$ =5.5 eV, previously proposed by Castleton et. al. on the basis of different arguments (Ce4f states localization) [25]. We also established that creation of one surface vacancy in Ce44O80 nanoparticle leads to significant spin redistribution. In the case of Ce85O160 the structures optimized at spin restricted or spin polarized level of theory resulted in different surface spin distribution.

Acknowledgments The research was supported in part by NSF (NIRT project CBET-0708172). The calculations were performed using (1) Stokes HPCC facility at UCF Institute for Simulation and Training (IST), (2) Bethe SMP server at UCF NanoScience Technology Center (NSTC), (3) the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

- 1. Kaspar J, Fornasiero P, Graziani M (1999) Catal Today 50: 285–298
- 2. Steele BCH, Heinzel A (2001) Nature 414:345-352
- 3. Chen JP, Patil S, Seal S, McGinnis JF (2006) Nat Nanotechnol 1:142–150
- Duclos SJ, Vohra YK, Ruoff AL, Jayaraman A, Espinosa GP (1988) Phys Rev B 38:7755–7758
- Barnighausen H, Schiller G (1985) J Less-Common Met 110:385– 390
- Kang ZC, Eyring L (1998) Oxides. Trans Tech, Clausthal Zellerfe, pp 301–358
- Heinemann C, Cornehl HH, Schroder D, Dolg M, Schwarz H (1996) Inorg Chem 35:2463–2475
- Seal S, Shukla S (2002) In: Baraton M, Nalwa HS (eds) Functionalization and surface treatment of nanoparticles. Academic, San Diego, CA
- 9. Herman GS (1999) Surf Sci 437:207-214
- Suzuki T, Kosacki I, Anderson HU, Colomban P (2001) J Am Ceram Soc 84:2007–2014
- 11. Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S (2000) J Phys Chem B 104:11110–11116
- 12. Conesa JC (1995) Surf Sci 339:337–352
- Tsunekawa S, Sahara R, Kawazoe Y, Ishikawa K (1999) Appl Surf Sci 152:53–56
- Deshpande S, Patil S, Kuchibhatla SVNT, Seal S (2005) Appl Phys Lett 87:133113-1–133113-3
- Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185–187
- Chiang YM, Lavik EB, Blom DA (1997) Nanostructured Mater 9:633–642
- Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1997) J Electroceram 1:7–14
- Skorodumova NV, Ahuja R, Simak SI, Abrikosov IA, Johansson B, Lundqvist BI (2001) Phys Rev B 64:115108
- Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G (2005) Phys Rev B 71:041102
- Kresse G, Blaha P, Da Silva JLF, Ganduglia-Pirovano MV (2005) Phys Rev B 72:237101
- Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G (2005) Phys Rev B 72:237102
- Loschen C, Carrasco J, Neyman KM, Illas F (2007) Phys Rev B 75:035115
- 23. Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943-954
- Anisimov VI, Korotin MA, Zaanen J, Andersen OK (1992) Phys Rev Lett 68:345–348

- 25. Castleton CWM, Kullgren J, Hermansson K (2007) J Chem Phys 127:244704
- 26. Pederson MR, Heaton RA, Lin CC (1985) J Chem Phys 82: 2688–2699
- 27. Perdew JP, Zunger A (1981) Phys Rev B 23:5048
- 28. Hay PJ, Martin RL, Uddin J, Scuseria GE (2006) J Chem Phys 125:034712
- 29. Da Silva JLF, Ganduglia-Pirovano MV, Sauer J, Bayer V, Kresse G (2007) Phys Rev B 75:045110-045121
- Andersson DA, Simak SI, Johansson B, Abrikosov IA, Skorodumova NV (2007) Phys Rev B 75:035106-035109
- 31. Cococcioni M, de Gironcoli S (2005) Phys Rev B 71:035105
- Fabris S, Vicario G, Balducci G, de Gironcoli S, Baroni S (2005) J Phys Chem B 109:22860–22867
- Jiang Y, Adams JB, van Schilfgaarde M (2005) J Chem Phys 123:1949189
- Loschen C, Bromley ST, Neyman KM, Illas F (2007) J Phys Chem C 111:10142–10145
- Loschen C, Migani A, Bromley ST, Illas F, Neyman KM (2008) Phys Chem Chem Phys 10:5730–5738
- Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217–229
- Dudarev SL, Botton GA, Savrasov SY, Szotek Z, Temmerman WM, Sutton AP (1998) Phys Status Solidi A 166:429–443
- Jiang Y, Adams JB, van Schilfgaarde M, Sharma R, Crozier PA (2005) Appl Phys Lett 87:2084324
- 39. Kresse G, Hafner J (1993) Phys Rev B 47:558–561
- 40. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169-11186
- 41. Blochl PE (1994) Phys Rev B 50:17953-17979
- Skorodumova NV, Baudin M, Hermansson K (2004) Phys Rev B 69:075401
- 43. Yang SW, Gao L (2006) J Am Chem Soc 128:9330-9331
- 44. Chen MY, Zu XT, Xiang X, Zhang HL (2007) Physica B 389:263–268
- 45. Tsunekawa S, Fukuda T, Kasuya A (2000) Surf Sci 457: L437–L440
- Dutta P, Pal S, Seehra MS, Shi Y, Eyring EM, Ernst RD (2006) Chem Mater 18:5144–5146
- Yang ZX, Woo TK, Baudin M, Hermansson K (2004) J Chem Phys 120:7741–7749
- Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Phys Rev Lett 89:166601
- Tuller HL, Nowick AS (1979) J Electrochem Soc 126:209– 217
- Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Phys Rev Lett 102:026101–026104
- Li H-Y, Wang H-F, Gong X-Q, Guo Y-L, Guo Y, Lu G, Hu P (2009) Phys Rev B 79:193401–193404